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Abstract. Many modern software projects use bug-tracking systems
(e.g., Bugzilla, Google Code Issue Tracker) to track software issues and
help developers reproduce these issues. There has been recent work on
automatically translating the natural language text (i.e., steps to repro-
duce) of bug reports to reproducing scripts, targeted at Android apps, to
facilitate app debugging process. The scripts describe the event sequences
leading to the app issues and thus can be reused for testing newer versions
of the apps. However, existing techniques require manually providing the
text description of steps to reproduce for generating reproducing scripts,
which is a non-trivial task because natural language text in bug reports
can be complex and contain much information irrelevant for bug repro-
duction. In this paper, we propose an approach that can automatically
extract the text description of steps to reproduce (S2R) from bug reports
to advance automated software issue diagnosis and test script reuse.
The approach is implemented as a tool, called S2RMiner, which com-
bines HTML parsing, natural language processing, and machine learn-
ing techniques. We have evaluated S2RMiner on 1000 original Android
bug reports. The results show that S2RMiner can extract S2R with high
accuracy.
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1 Introduction

Mobile devices with advanced computing ability, such as smartphones and
tablets, have become increasingly prevalent. Mobile applications (a.k.a apps)
in different domains are developed and used on these devices. In 2017, there
were over 3.5 million apps published in Google app store [4]. As mobile apps
are becoming complex due to developers adding more features to make them
competitive in the market, there is an urgent need to ensure the quality of the
apps. A recent survey indicates that 88% users are likely to abandon the apps
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if they repeated encounter the same issue [21]. Therefore, developers need to
rapidly resolve app issues to avoid losing customers.

Many modern software projects use bug tracking systems (e.g., GitHub [2],
Google Code [3], Bitbucket [1]) to help developers track and reproduce app
issues and thus expedite the process of resolving the issues. These systems allow
users or developers to submit bug reports describing the issues they encountered
in the apps, typically involving bug symptoms, steps to reproduce (S2R), and
expected behaviors. Once a developer receives a bug report, he or she will try
to reproduce the bug according to the description of S2R. However, reproducing
bugs from bug reports is a challenging task [20]. This is because bug reports are
often written by natural language, which can be imprecise and often incomplete.
In addition, even if a bug report is perfectly understood by developers, the
event-driven nature of mobile apps can make actual process of bug reproduction
complex as it may require developers to manually navigate through a number of
actions before exposing the bug [26].

To help developers reproduce issues reported for mobile apps, there has been
some work that can automatically translate the natural language text of a bug
report into a test script that can directly execute on mobile apps [15,26]. The
translated test scripts can reproduce bugs or be re-used to perform regression
testing for future versions of apps. For example, YAKUSU [15] analyzes the
natural language text of steps to reproduce (S2R) in an Android bug report and
automatically translates it into actual test cases. ReCDroid [26] uses grammar
patters to extract key information from S2R and then leverages dynamic GUI
exploration to reproduce the app crash guided by the extracted information. The
above work uses S2R as input and assumes it is readily available and manually
provided by developers. This requires additional manual effort and prevents the
bug reproduction tools from being used in fully automated environment (e.g.,
continuous integration). Therefore, a tool that can automatically extract S2R
from bug reports is needed to enhance the efficiency of bug reproduction and the
generation of reusable test scripts.

There has been little research on targeting at detecting S2R in bug report
descriptions. Most existing techniques aim to detect other types of information,
such as source code snippets [10,23] and stack traces [9,22]. While one approach
has been proposed to detect S2R [13], it focuses on determining whether S2R
exists in a bug report rather than extract the the actual text of S2R. In fact,
extracting S2R is non-trivial because natural language bug descriptions are often
unstructured. Although some bug tracking systems (e.g., Bugzilla) provide semi-
structured templates for reporters to write bug symptoms, S2R, and expected
behaviors, they cannot guarantee that reporters will provide such information.

In this paper, we propose a new technique, S2RMiner, targeted at Android
apps, that can automatically analyze bug reports to extract S2R. The extracted
S2R can achieve several straightforward benefits, such as providing succinct
information to help developers understand the reported bug and providing
insights for improving the quality of bug reports (e.g., an absent S2R indicates
a low-quality bug report). Moreover, S2RMiner facilitates software reuse in the
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context of regression testing [25]. For example, bug-triggering test cases are
often reused to test newer versions of software. Therefore, the extracted S2R by
S2RMiner, once translated into automated test scripts, can be reused in regres-
sion testing.

S2RMiner leverages HTML parsing, natural language processing (NLP), and
machine learning techniques to analyze the bug reports (in HTML format)
directly downloaded from the issue tracking systems for extracting S2R. Specif-
ically, HTML parsing extracts text relevant to S2R from the HTML files of bug
reports. NLP is used to obtain different types of text features of each sentence by
employing part-of-speech (POS) tags, dependency parsing, and stemming. With
text features, a Support Vector Machine(SVM)-based machine learning method
[17] is used to predict and extract S2R.

To determine the effectiveness of our approach, we apply S2RMiner on 1000
bug reports randomly selected from GitHub and Google code. The results showed
that S2RMiner is effective at extracting S2R. The average F-measures are 0.65
and 0.65 on GitHub and Google code, respectively. The accuracy scores on the
two datasets are 0.87 and 0.93.

In summary, our paper makes the following contributions:

– The design and development of the first approach that can extract S2R sen-
tences directly from the textual description of bug reports.

– An empirical study showing that S2RMiner is effective at extracting S2R with
high precision.

– The implementation of our approach as a publicly available tool, S2RMiner,
along with all experiment data [5].

In the next section, we introduce a motivating example. We then present the
details of S2RMiner in Sect. 3. Our empirical study and results are presented
Sects. 4 and 5. We present the related work in Sect. 6, and then give our conclu-
sions in Sect. 7.

2 A Motivating Example

Figure 1 shows an example bug report. Given the whole text description, it is
unclear which sentence belongs to S2R. Therefore, existing bug reproduction
tools (e.g., YAKUSU and ReCDroid) cannot directly work on the raw description
of the bug report.

S2RMiner is designed and implemented to accurately extract all S2R sen-
tences from the bug report. Specifically, S2RMiner takes the HTML format of
the issue page (Fig. 2) as input and outputs a sequence of S2R sentences (i.e.,
the text inside the rectangle indicates S2R). If a bug report does not have S2R
(e.g., Fig. 3), S2RMiner will report S2R is missing.

3 S2RMiner Approach

S2RMiner consists two major phases. In the first phase, S2RMiner uses a HTML
parser to extract the key text containing S2R from the HTML format of an issue
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Fig. 1. A bug report

Fig. 2. HTML format of Fig. 1
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Fig. 3. Missing S2R

page. As shown in Fig. 2, the HTML issue page contains HTML tags, such as
</li>,</ol>, and <tbody class = “d-block”>. S2RMiner filters out the HTML
tags and obtains only text “start the app”.

In the second phase, S2RMiner uses NLP techniques to extract text features
from the sentences of the filtered text. It then uses machine learning to label
whether a sentence belongs to S2R. Finally, the sentences labeled with S2R are
saved into a output file. The output can either be manually analyzed by devel-
opers or provided as an input to the test script generation tool (e.g., YAKUSU)
or the bug reproduction tool (ReCDroid).

3.1 Phase 1: HTML Parsing

Many bug tracking systems allow reporters to submit bug reports through web
pages and developers can reply to the bug report by adding comments to the
page. Therefore, bug report descriptions are often downloaded as HTML files.
The original HTML file has a number of HTML tags. In addition, the raw HTML
file contains many other types of information, such as bug symptoms, expected
behaviors, developers’ replies, CSS code, page information, and so on. These
types of information are irrelevant to S2R. Even on a simple bug report shown
in Fig. 1, the associated HTML file contains 1371 lines and is as large as 104
KB. S2RMiner needs to eliminate all such information to obtain the minimum
amount of text containing S2R.

Specifically, S2RMiner removes all HTML tags and parses the first block of
text in the HTML page. The intuition is that only the first comment involves
S2R described by the reporter.
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3.2 Phase 2: S2R Extraction

The problem of detecting S2R sentences can be formulated into the problem of
text classification [12]. Given a sentence, a text classification tool can predict
whether it is a S2R sentence or not. S2RMiner performs the classification in
three steps. First, it splits the text into individual sentences by employing sev-
eral heuristics. Second, for each sentence, S2RMiner extracts text features used
for building a classifier. Third, leveraging the text features, S2RMiner builds a
classifier that can predict whether a sentence is S2R. All S2R sentences are saved
into an output file.

Splitting Text into Sentences. S2RMiner first needs to detect individual
sentences for being labeled as S2R sentence or non-S2R sentence. We cannot
simply view each text line as a sentence because a line may contain more than one
sentence. In the example of Fig. 1, the first line in the second to last paragraph
(“The reason is that . . . ”) contains two sentences. While tools such as spaCy [7]
have the capability of detecting sentences, they are not accurate because they
are not intended to deal with bug report text.

To address this problem, S2RMiner designs several heuristics to identify sen-
tences from each line of the text: (1) one text line contains at least one sentence;
(2) a text segment ending with a full stop “.” is a sentence; (3) if a full stop is
preceded by a number (e.g., “1.”) or a part of ellipsis, it is not considered to be
the end of a sentence.

Extracting Text Features. S2RMiner employs a well-known NLP tool spaCy
[7] to extract text features from each sentence. We consider three types of fea-
tures. The first type of feature is stemming, which transforms each word in the
sentence to its stem. Stemming is the process of removing the ending of a derived
word to get its root form. For example, “clicking”, “clicks”, and “clicked” become
“click”. Without stemming, multiple words with the same meaning would be
used as different features, resulting in too many features and thus a low quality
machine learning model.

The second type of feature is part-of-speech (POS) tags, which labels each
word with a POS tag. The features used by S2RMiner are words labeled as
“noun”, “verb”, and “adjective”.

The third type of features is dependency parsing, which analyzes the gram-
mar structure of the sentence. Specifically, words labeled as root, predicate, and
object are considered as features.

Building a Text Classifier. We use n-grams and CountVectorizer [19] to
transform text features into numerical features, which is easy to process by a
machine learning tool. A n-gram a contiguous sequence of n items from a given
sequence of text. For example, 1-gram (or unigram) indicates single word tokens
and 2-gram (or bigrams) indicates two consecutive word tokens.
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The current implementation of S2RMiner uses Support Vector Machines [18]
(SVM) to do binary classification given the extracted text features. SVM outputs
a “1” if a sentence is a S2R and a “0” otherwise. S2RMiner saves the sentence
labeled with “1” into the result file for each bug report.

4 Evaluation

To evaluate S2RMiner, we consider two research questions:

RQ1: What is the performance of S2RMiner in extracting S2R from bug
reports?
RQ2: Which types of text features have the best performance in extracting S2R
from bug reports?

RQ1 lets us evaluate the effectiveness of S2RMiner in extracting S2R. RQ2
lets us investigate how different types of text features influence of the perfor-
mance of S2RMiner.

4.1 Datasets

We evaluated S2RMiner on bug reports from GitHub [2] and Google Code [3]. To
prepare the training set, we randomly crawled 500 bug reports from GitHub and
500 reports from Google Code. We hired two undergraduate students to label the
sentences of each bug report as S2R and non-S2R. During the labeling process,
the inspector read the reports with sufficient details in the bug descriptions to
identify S2R sentences. To ensure the correctness of our results, the manual
inspections were performed independently by the two undergraduate students.
Any time there was dissension, the authors and the inspectors discussed to reach
a consensus.

We randomly divided the 500 bug reports from both datasets into two sets—
400 for training 100 for testing. Each bug report contains one or more sentences,
which are the instances for building machine learning models.

4.2 Experiment Design

The experiment was conducted on a physical x86 machine running with Ubuntu
14.04 installed. The NLP techniques of S2RMiner was implemented by the spaCy
dependency parser [7]. The classifier was implemented by Scikit-Learn [6].

Performance Metrics. We chose performance metrics allowing us to answer
each of our two research questions. Specifically, we employ accuracy, precision,
recall, and F1-measure. A sentence can be classified as: S2R when it is truly a
S2R sentence (true positive, TP); it can be classified as a S2R sentence when
it is actually not (false positive, FP); it can be classified as a non-S2R sentence
when it is actually a S2R sentence (false negative, FN); or it can be correctly
classified as a non-S2R sentence (true negative, TN).
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– Accuracy: the number of instances correctly classified over the total number
of instances.

Accuracy =
TP + TN

TP + FP + FN + TN

– Precision: the number of instances correctly classified as S2R over the num-
ber of all instances classified as S2R.

P =
TP

TP + FP

– Recall: the number of instances correctly classified as S2R over the total
number of S2R instances.

R =
TP

TP + FN

– F-measure: a composite measure of precision and recall for buggy instances.

F (b) =
2 ∗ P ∗ R

P + R

Combinations of Different Text Features. RQ2 aims to evaluate how
S2RMiner performs when using the combinations of different types of text fea-
tures. Table 1 shows the features used for evaluation.

Table 1. Types of text features

No NLP techniques Only use original words as features

Stem(1 gram) Only stem of the word as features

Stem(3 gram) Only stem of the word but consider 3 g relationship

Stem(3 gram)+pos Combine stem and part of speech as features

Stem(3 gram)+dep Combine stem and dependency as features

Stem(3 gram)+pos+dep Combine three of them as features

(Stem+pos+dep)(3 gram) Add 3 gram relationship to all of features

4.3 Threats to Validity

The primary threat to external validity for this study involves the representa-
tiveness of our subjects and bug reports. Other subjects may exhibit different
behaviors. Data recorded in bug tracking systems can have a systematic bias rel-
ative to the full population of bug reports [11] and can be incomplete or incorrect
[8]. However, we do reduce this threat to some extent by using two well studied
open source projects and bug sources for our study. We cannot claim that our
results can be generalized to all systems of all domains though.
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The primary threat to internal validity involves the use of manual inspection
to identify the S2R sentences To minimize the risk of incorrect results given by
manual inspection, the sentences are labeled independently by two people.

The primary threat to construct validity involves the dataset and metrics
used in the study. To mitigate this threat, we used bug reports from two bug
tracking systems, which are publicly available and generally well understood. We
also used the well known, accepted, and validated measures of accuracy, recall,
precision, and F-measure.

5 Results and Analysis

Tables 2 and 3 summarizes the results of the two datasets.

RQ1: Performance of S2RMiner. Tables 2 and 3 show that S2RMiner is able
to extract S2R from bug reports in GitHub and Google Code. The accuracy is
above 0.85 for GitHub and above 0.92 for Google code. Regarding the precision
and recall, the best F-score is above 0.6 for both Github and Google code. We
consider F-measures over 0.6 to be good [14].

Table 2. GitHub result

GitHub result TP TN FP FN Accuracy Precision Recall F-score

No NLP techniques 79 612 33 84 0.85 0.69 0.47 0.56

Stem(1 gram) 99 596 49 69 0.86 0.66 0.62 0.64

Stem(3 gram) 88 612 33 71 0.87 0.72 0.55 0.63

Stem(3 gram)+pos 94 605 40 65 0.86 0.70 0.59 0.64

Stem(3 gram)+dep 94 609 36 65 0.87 0.72 0.59 0.65

Stem(3 gram)+pos+dep 90 607 38 69 0.86 0.70 0.57 0.63

(Stem+pos+dep)(3 gram) 87 605 40 72 0.86 0.69 0.55 0.61

In both bug tracking systems, the precision scores are better than the scores
of recall. We analyzed the results and found that the low recall could be due to
(1) the small training set; (2) incorrect labels. As part of the future, we intend
to expand the training set and perform more robust labeling work.

In summary, the above results imply that S2RMiner is effective at extracting
S2R.

RQ2: Comparison of Different Types of Text Features. As we can see
from the two tables, comparing the text feature without using NLP technique
(Fn) with the other feature combinations in the GitHub dataset, Fn performed
the worst. However, this is not true in the Google Code dataset. When comparing
different feature combinations with NLP applied, the dependency parsing feature
type slightly improved the performance in terms of F-measures.
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Overall, these results imply that the the stemming and dependency parsing
feature types can potentially improve the performance of S2RMiner.

6 Related Work

Yukusu [15] translate S2R descriptions into executable test scripts. ReCDroid
[26] use S2R descriptions to guide Android crash reproduction. Both tools assume
that S2R is readily available and can be provided by users. In contrast, S2RMiner
aims to automatically extract S2R sentences from raw bug reports.

Table 3. Google code result

Google Result TP TN FP FN Accuracy Precision Recall F-score

No NLP techniques 40 516 13 32 0.92 0.75 0.56 0.64

Stem(1 gram) 44 507 22 28 0.92 0.67 0.61 0.64

Stem(3 gram) 38 519 10 34 0.93 0.79 0.53 0.63

Stem(3 gram)+pos 36 518 11 36 0.92 0.77 0.5 0.61

Stem(3 gram)+dep 39 520 9 33 0.93 0.81 0.54 0.65

Stem(3 gram)+pos+dep 40 517 12 32 0.93 0.77 0.56 0.65

(Stem+pos+dep)(3 gram) 36 518 11 36 0.92 0.76 0.5 0.61

Chaparro et al. [13] proposed an approach, called DeMIBuD, to detect
whether S2R is missing in a bug report. Their approach is probably most related
to S2RMiner. However, DeMIBuD focuses on detecting whether a bug report
contains S2R or not, whereas S2RMiner aims to extract all S2R in a bug report.
In addition, S2RMiner analyzes original issue page of a bug report (e.g.,in the
HTML format), whereas DeMIBuD can only handle the regular text.

There has been some research on mining bug repositories to classify and
predict specific fault types. For example, Gegick et al. [16] classify bug reports
as either security- or non-security-related. However, these techniques neither
classify configuration bug reports nor identify concrete bug sources. Xia et al.
[24] use text mining to categorize configuration bug reports related to system
settings and compatibilities. In contrast, S2RMiner analyzes bug reports at the
sentence to extract S2R.

7 Conclusion

We have presented S2RMiner, an automated approach to extract step to repro-
duce (S2R) sentences from bug reports. S2RMiner leverages HTML parsing,
natural language processing, and machine learning techniques to analyze bug
reports in the HTML formats and extract the needed contents from it. We have
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evaluated S2RMiner on two datasets from two popular bug tracking systems—
GitHub and Google Code. The results showed that S2RMiner can extract S2R
with a high accuracy and that the stem and grammar dependency text features
play important roles in improving the performance of S2RMiner.
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